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Abstract 

In this paper, we generalise the  five value theorem for difference 
operator for finite ordered meromorphic functions which in turn may generalise and 
simplify many earlier results of Nevanlinna theory. 
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1 Introduction, Definitions and Results 

 five value theorem has always amazed researchers in analysis. It has been 
generalised in many ways over the years (Yang & Yi, 2003). The recent years have 
witnessed an increased interest in the study of the Nevanlinna theory for the difference 
operator. The difference analogue for the classical Nevanlinna theory has first been studied 
by Halburd and Korhonen in the year 2006.  We can see that the difference 
analogue for non-constant meromorphic functions for exact differences is f (z + c) f (z) = 

cf (z)  0, for c   C. So instead of non-constant meromorphic functions f , we will use 
the meromorphic functions for which cf 0 throughout the paper. We will further 
investigate into the topic and try to deduce difference analogues to the 
classical Nevanlinna Five point theorem. We need to define certain terms first. 

Definition 1.1. (Halburd & Korhonen, 2006) Let a, c C and f be a finite-order non- 
constant meromorphic function. Two points p and q are said to be c-separated a-pairs 
if f (p) = f (q) = a and q = p + c. 

following    definition    of    an    analogous    counting    function    nc(r,    a).  In order 
to establish the difference analogue of the Nevanlinna theory, we need the 

f , c, a    C, nc(r, a) is the number of points z0, in  z     r, where f (z0) = a and f (z0 + 
c) = a, counted according to the number of equal terms in the expansions of Definition 
1.2. (Halburd & Korhonen, 2006) For a non-constant meromorphic function f (z) and f (z + 
c) in a neighbourhood of z0. Also, 

 

Nc(r, a)  = c 
0 

c dt + nc(0, a) log r 
t 

 
Nc(r, ) = 

0 t 
dt + nc(0, ) log r, c 
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where nc(r, ) is the number of c-separated pole pairs of f , which are exactly the 
c-separated 0-pairs of 1/f . 
Definition 1.3. (Halburd & Korhonen, 2006) For the integrated counting functions 
N (r, a) and Nc(r, a), we have 

Nc(r, a) = N (r, a)  Nc(r, a) 
which is the number of a-points of f ignoring the c-separated pairs. 

The above definition is a generalisation of N (r, f ) of classical Nevanlinna theory 
which is the integrated counting function of the number of distinct poles of f in |z|  r. 

be a positive integer and a be a small function of f .  Then we define Np)(a, r) as the 
Definition 1.4. Let c  C and f be a meromorphic function of finite order. Let p 

we define N(p(a, r) as the number of a-points of f  ignoring at least p number of c- 
number of a-points of f ignoring at most p number of c-separated pairs of f . Similarly, 
separated pairs of f . 

Also, if A is a subset of C, then we define NA(a, r) as the number of a-points of f 
in the set A, ignoring the c-separated pairs. 

Definition 1.5. (Hayman, 1964) Let f be a non-constant meromorphic function and 
let a  C  . Then, 

E(a, f ) = {z| f (z) = a} 
where, each zero is counted with its multiplicity and 

E(a, f ) = {z| f (z) = a}, 
Ek = {z| f (z) = a with multiplicity k} 

where, each zero is counted exactly once. 

Analogous to the above definition, we define the following for c-separated pairs. 

 
function. We define Ec(a; f ) to be the set of all a-points of f , ignoring the c-separated 
Definition 1.6. (Halburd & Korhonen, 2006) Let c C and f be a meromorphic 
pairs. 

Having defined the integrated counting function for c-separated pairs, we need to 
define exceptional paired values of f and write an analogue for the theorem of excep- 
tional values for meromorphic functions. 

 
paired value of f with separation c if whenever f (z) = a, then f (z + c) = a with the 
Definition 1.7. (Halburd & Korhonen, 2006) Let a C. Then a is an exceptional 
same or higher multiplicity for all except at most finitely many a-points of f . 

Analogous to the definitions of the index of multiplicity, for a meromorphic func- 
tion, Halburd and Korhonen defined the c-separated pair index as the following: 

Definition 1.8. (Halburd & Korhonen, 2006) If c C and f is a meromorphic function 
of finite order, then 

(a, f ) = lim inf 
Nc(r, a) 

, 
c 

r  
T (r, f ) 
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where, a is either a slowly moving periodic function with period c, or a = . We also 
have the following definition 

 

Nc(r, a) 
c(a, f ) = 1  lim sup 

T (r, f ) 
, 

which is analogous to the definition of 
 

N (r, a) 
a, f ) = 1  lim sup 

T (r, f ) 
. 

For standard notations on the classical Nevanlinna theory, we refer the reader to 
Hayman, Yang & Yi and Yang. 

The famous five value theorem of Nevanlinna may be represented as follows: 

 
tions and aj  C   be distinct for j = 1, 2, 3, 4, 5. If E )(a; f ) = E )(a; g) for j         
=          1(1)5           then              f         g. Theorem 1.9. 
(Hayman, 1964) Let f and g be two non-constant meromorphic func- 

In 1976, H. S. Gopalakrishna and S. S. Bhoosnurmath improved Theorem 1.9 in 
the following manner. 

Theorem 1.10. (Gopalakrishna & Bhoosnurmath, 1976) Let f and g be distinct non- 
constant meromorphic functions. If there exist distinct elements a1, a2, . . . , ak of C  

 such that Epj )(a; f ) = Epj )(a; g) forj = 1(1)k where p1, p2, . . . , pk are positive 
integers or with p1 p2 . . . pk, then 

    pj     2 + 
   p1   

.
 

In 2000, Y. Li and J. Qiao improved Theorem 1.9 by considering shared small 
functions instead of shared values. Their result may be stated as follows: 

 
tions and aj be distinct elements in S (f )  S (g) for j  = 1(1)5. If E )(aj ; f ) = 
E )(aj ; g) for j = 1(1)5 then f  g.                                                        Theorem 
1.11. (Li & Qiao, 2000) Let f and g be non-constant meromorphic func- 

The above theorem was further generalised by Chen Chen and Tsai in the year 2007 
in the following 

 
phic functions. If a1, a2, . . . , ak, k 5 are distinct functions in S (f ) S (g) such 
Theorem 1.12. (Chen, Chen & Tsai, 2007) Let f and g be two non-constant meromor- 
that 

 
and 

E(aj, f )  E(aj, g), 

k         . 
 

  

    1  
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g aj 

k 3 

then f  g. 

j=1 

, 
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lim inf 
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lim inf k=1 

Nc r, f ak 

lim inf k=1 
Nc 

r, f ak 
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.
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has 
developed manifolds and in many directions over the years.  Researchers have tried  
to reduce the modes of sharing by defining weighted sharing and other partial sharing 
methods, taking moving targets or small functions, relaxing the conditions of sharing 
etc. The necessity of discretization of variable and calculus have further opened up 
dimensions of the improvement. The difference analogue for the classical Nevanlinna 
theory was first studied by Halburd and Korhonen in 2006. 

We now state the main results of this paper. 

 
If ak, k = 1(1)5, are five distinct periodic functions of period c in S (f )  S (g) such 
Theorem 1.13. Let c C and let f and g be two finite-ordered meromorphic functions. 
that 

 
and 

Ec(ak; f )  Ec(ak; g), (1) 

5 

lim inf k=1 
Nc r, 1  

f ak 1 

> , 
r  5 

k=1 

Nc 
r, 1 2 

g ak 

then, either f g or both f and g are periodic with period c. 

The next theorem is a generalisation of the previous theorem which is analogous to 
theorem 1.12. 

 
If a1, a2, . . . , ak, k 5, are distinct periodic functions of period c in S (f ) S (g) 
Theorem 1.14. Let c C and let f and g be two finite-ordered meromorphic functions. 
such that 

 
and 

Ec(ak, f )  Ec(ak, g), (2) 

k     
  
. 

    1  
 

 
 

 
r  k 

 
k=1 

Nc r,   1  

g ak 

k 3 

then, either f g or both f and g are periodic with period c. 
The above theorem is a generalisation of theorem 1.13. Putting k = 5, we get 

k     
  
. 

    1  
r  k 

 
k=1 

Nc 
r,   1  

g ak 

5  3 2 

which gives the same condition as that of theorem 1.13. 

 
2 Lemmas 

 
function of finite order such that cf  0. Let q  2, and let a1(z), a2(z), . . . , aq(z) 
Lemma 2.1. (Halburd & Korhonen, 2006) Let c  C, and let f be a meromorphic 

, 
1 

> 

   

   

 > 
1 1 
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+ o(1) 

3 
k=1 

r, 
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. 

 
 
 

be distinct meromorphic periodic functions with period c such that ak S (f ) for 
k = 1, . . . , q. Then 

(q  1)T (r, f )  Nc(r, f ) + 

k=1 

Nc 
r,

    1  

f  ak 

+ S(r, f ) 

where the exceptional set associated with S(r, f ) is of at most finite logarithmic mea- 
sure. 

 

Lemma 2.2. (Halburd & Korhonen, 2006) Let c C. If a finite-order meromorphic 
function f has three exceptional paired values with separation c, then f is a periodic 
function with period c. 

 

3 Proof of the Main Theorems 
Proof of theorem 1.13 
Proof. Suppose f is periodic with period c. Then by definition, all the a-points are 
paired and by the equation (1), g has atleast five exceptional paired values, and hence, 
it has to be periodic by lemma 2.2. 

period c and that f  g. We have, by lemma 2.1 and the properties of Nc(r, f ), So, 
without loss of generality we assume that neither f nor g are periodic with 

3T (r, f )  

k=1 

Nc 
r,

    1  

f  ak 

+ S(r, f ), (3) 

outside a set of finite logarithmic measure. Similarly, we have for g, 
 

3T (r, g)  

k=1 

Nc 
r,

    1  

g  ak 

+ S(r, g), (4) 

outside a set of finite logarithmic measure. Since f g, by equations (3) and (4), we 
have, 

k=1 

Nc 
r,

    1  

f  ak N 

.

 
r,

 1  

f g 

T (r, f ) + T (r, g) + O(1) 
5 

 
3
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+S(r, f ) + S(r, g) + O(1) 
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from which it follows that 

 
 

5 

Nc 

 
 

r, 1  

f ak 1 
 

 

lim inf k=1 .    , 
which is a contradiction to our assumption. Hence f and g has to be identical. 

 

Proof of theorem 1.14 

Proof. Suppose first that f is periodic with period c. Then all the a-points of f are 
paired and by the equation (2), g has at least five exceptional paired values. Thus, g 
has to be periodic by lemma 2.2. 

by lemma 2.1 and the properties of Nc(r, f ),                                                        So, 
assume that neither f nor g are periodic with period c and that f g. We have, 

(k  2)T (r, f )  

j=1 

Nc 
r,

    1  

f  aj 

+ S(r, f ), (5) 

outside a set of finite logarithmic measure. Similarly, we have for g, 
(k  2)T (r, g)  

j=1 

Nc 
r,

    1  

g  aj 

+ S(r, g), (6) 

outside a set of finite logarithmic measure. Since f g, by equations (5) and (6), we 
have, 

j=1 

Nc 
r,

    1  

f  aj N 
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 1  
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= T (r, f g) + O(1) 
T (r, f ) + T (r, g) + O(1) 
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from which it follows that 
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